
Practical Languages



In this section we will consider how the Pumping Lemma  applies to 
standard programming languages.

First, here is an alternative version of the Pumping Lemma. This gives 
some control over where the pumping strings v and x occur, at the 
cost of giving up control over the length of string vwx:

An Alternative Pumping Lemma:  Let L be a context-free language. 
Then there is a constant p so that if z is a string in L and |z|>=p there 
must be a decomposition z=uvwxy such that

1) |u| < p
2) vx ≠ e (i.e., both v and x aren't e)
3) For each i>=0 uviwxiy is in L



To prove this remember our construction for the original Pumping 
Lemma:
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If the string is long enough we can find a variable A 
that is repeated on some leaf-to-root path; the 
upper instance of this generates the vwx substring.
In the Pumping Lemma we chose A as far down as 
possible to force |vwx|<=p.  Instead, we now 
choose A to be as far left as possible.  If u has more 
than p= 2N leaves one of them must be of depth 
greater than N, forcing a repeated variable.  If we 
choose A to be as far left as possible then |u| < p.   



Now consider a C-like programming 
language with the common rule that 
variables need to be declared before 
they are used.  If this language is 
context-free let p be its pumping 
constant.   Consider the program at 
right, with more than p xi declarations.  
How might this program be 
decomposed into uvwxy parts, where v 
and x  can be pumped?

int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = (x0+x1+...+xp);
return ((s+x0+x1+...+xp));

}
void main() {

print( foo() );
}



int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = x0+x1+...+xp;
return (s+x0+x1+...+xp);

}
void main() {

print( foo() );
}

Note that removing part of any line 
other than the assignment and return 
statements in function foo() results in 
something that is not a program.  That 
fact, combined with our alternative 
lemma says that the v-portion of a 
decomposition must remove one or 
more xi declarations.  The x-portion 
must  remove the corresponding 
variables from the assignment and 
return statements.



int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = (x0+x1+...+xp);
return ((s+x0+x1+...+xp));

}
void main() {

print( foo() );
}

Suppose xk is one of the variables declared 
in the v-portion.  At the very least the x-
portion must include

s = x0+x1+...+xk+...+xp;
return (s+x0+x1+...+xk+...+xp);

Thanks to the parentheses if this 
portion is removed the result is not a 
valid statement.  



int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = x0+x1+...+xp;
return (s+x0+x1+...+xp);

}
void main() {

print( foo() );
}

Alternatively, if the v-portion includes 
everything from the declaration of xk

through the assignment statement, then 
because of the placement of s in the return 
statement the x-portion would need to 
include the entire return statement.  

Any way we slice it, the v and x-portions 
together need to include the entire 
assignment statement and the entire 
return statement.  If we pump 0 times 
these statements are removed and the 
result is an invalid program (function foo() 
needs a return statement).



This shows that our programming language is not context-free.  What 
makes it non-context-free is the need to declare variables before 
using them.  Any construction that makes a statement acceptable if 
something else was said any arbitrary number of statements 
previously leads to the language not being context-free.  For 
example, Python doesn't  require variable declarations, but the 
statement x=y+1 is valid if y has previously been assigned to and 
invalid if it hasn't.  A slight variant of our construction can be used to 
show that the Python language is not context-free. 



Our Alternative Pumping Lemma is a special case of Ogden's Lemma:
Let L be a context-free language. Then there is a constant p so that if z 
is a string in L and |z|>=p, and if we "mark" at least p letters of z, then 
there must be a decomposition z=uvwxy such that

1) vwx has at most p marked letters
2) vx has at least one marked letter
3) For each i>=0 uviwxiy is in L

We won't prove Ogden's Lemma, though the proof is just a variation 
on our proof of the Pumping Lemma.  Note that we could derive our 
Alternative Pumping lemma from Ogden by marking the first p letters 
of z.



We can use Ogden's Lemma to find a language that is pumpable but 
not context free. Let L = {0i1j2k | i, j, and k are all different}.  To see 
that L is pumpable, consider z in L where |z| =i+j+k >6.  If i is the 
largest of i,j,k then let d be a number less than i where i-d is neither j 
nor k.  Then let u = e, v = 0d w = 0i-d1j2k, x = y = e.  Then in uv0wx0y  
there are different numbers of 0s than 1s or 2s, and for any n > 0 
uvnwxny has more 0s than 1s or 2s. So z is pumpable if 0 is the most 
common digit.  If j is the largest of i,j, and k choose d so that j-d is 
neither i nor k and let u=0i, v=1d, w=1j-d2k,x=y=e.  Again uvnwxny has 
different numbers of the three digits for every n.  We can do a similar 
construction of k is the largest of the three digits.  So L is pumpable.



We will use Ogden's Lemma to show L is not context-free. Suppose it 
is context free; let p be its pumping constant. Consider z = 0p1p+p!2p+2p!

We will mark the p 0s.  Now consider any decomposition z=uvwxy that 
satisfies Ogden's Lemma. It is obvious that v and x each contain only 1 
digit.  One of them contains 0s.  The other contains at most 1 of the 
digits {1,2}.  So let d be the number of 0s in vx.  For any n uvnwxny has 
p+(n-1)d 0s. If vx contains no 1s then when n=1+(p!)/d uvnwxny has 
the same number of 0s and 1s and so is not on L. If vx contains no 2s 
then when n=1+(2p!)/d uvnwxny has the same number of 0s and 2s 
and so is not in L.  Either way, this string z is not pumpable, so L is not 
context free.


