
Practical Languages

In this section we will consider how the Pumping Lemma applies to
standard programming languages.

First, here is an alternative version of the Pumping Lemma. This gives
some control over where the pumping strings v and x occur, at the
cost of giving up control over the length of string vwx:

An Alternative Pumping Lemma: Let L be a context-free language.
Then there is a constant p so that if z is a string in L and |z|>=p there
must be a decomposition z=uvwxy such that

1) |u| < p
2) vx ≠ e (i.e., both v and x aren't e)
3) For each i>=0 uviwxiy is in L

To prove this remember our construction for the original Pumping
Lemma:

S

A

:
:

:
:
A

u v w x y

If the string is long enough we can find a variable A
that is repeated on some leaf-to-root path; the
upper instance of this generates the vwx substring.
In the Pumping Lemma we chose A as far down as
possible to force |vwx|<=p. Instead, we now
choose A to be as far left as possible. If u has more
than p= 2N leaves one of them must be of depth
greater than N, forcing a repeated variable. If we
choose A to be as far left as possible then |u| < p.

Now consider a C-like programming
language with the common rule that
variables need to be declared before
they are used. If this language is
context-free let p be its pumping
constant. Consider the program at
right, with more than p xi declarations.
How might this program be
decomposed into uvwxy parts, where v
and x can be pumped?

int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = (x0+x1+...+xp);
return ((s+x0+x1+...+xp));

}
void main() {

print(foo());
}

int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = x0+x1+...+xp;
return (s+x0+x1+...+xp);

}
void main() {

print(foo());
}

Note that removing part of any line
other than the assignment and return
statements in function foo() results in
something that is not a program. That
fact, combined with our alternative
lemma says that the v-portion of a
decomposition must remove one or
more xi declarations. The x-portion
must remove the corresponding
variables from the assignment and
return statements.

int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = (x0+x1+...+xp);
return ((s+x0+x1+...+xp));

}
void main() {

print(foo());
}

Suppose xk is one of the variables declared
in the v-portion. At the very least the x-
portion must include

s = x0+x1+...+xk+...+xp;
return (s+x0+x1+...+xk+...+xp);

Thanks to the parentheses if this
portion is removed the result is not a
valid statement.

int foo() {
int x0;
int x1;
int x2;
.....
int xp;
int s;
s = x0+x1+...+xp;
return (s+x0+x1+...+xp);

}
void main() {

print(foo());
}

Alternatively, if the v-portion includes
everything from the declaration of xk

through the assignment statement, then
because of the placement of s in the return
statement the x-portion would need to
include the entire return statement.

Any way we slice it, the v and x-portions
together need to include the entire
assignment statement and the entire
return statement. If we pump 0 times
these statements are removed and the
result is an invalid program (function foo()
needs a return statement).

This shows that our programming language is not context-free. What
makes it non-context-free is the need to declare variables before
using them. Any construction that makes a statement acceptable if
something else was said any arbitrary number of statements
previously leads to the language not being context-free. For
example, Python doesn't require variable declarations, but the
statement x=y+1 is valid if y has previously been assigned to and
invalid if it hasn't. A slight variant of our construction can be used to
show that the Python language is not context-free.

Our Alternative Pumping Lemma is a special case of Ogden's Lemma:
Let L be a context-free language. Then there is a constant p so that if z
is a string in L and |z|>=p, and if we "mark" at least p letters of z, then
there must be a decomposition z=uvwxy such that

1) vwx has at most p marked letters
2) vx has at least one marked letter
3) For each i>=0 uviwxiy is in L

We won't prove Ogden's Lemma, though the proof is just a variation
on our proof of the Pumping Lemma. Note that we could derive our
Alternative Pumping lemma from Ogden by marking the first p letters
of z.

We can use Ogden's Lemma to find a language that is pumpable but
not context free. Let L = {0i1j2k | i, j, and k are all different}. To see
that L is pumpable, consider z in L where |z| =i+j+k >6. If i is the
largest of i,j,k then let d be a number less than i where i-d is neither j
nor k. Then let u = e, v = 0d w = 0i-d1j2k, x = y = e. Then in uv0wx0y
there are different numbers of 0s than 1s or 2s, and for any n > 0
uvnwxny has more 0s than 1s or 2s. So z is pumpable if 0 is the most
common digit. If j is the largest of i,j, and k choose d so that j-d is
neither i nor k and let u=0i, v=1d, w=1j-d2k,x=y=e. Again uvnwxny has
different numbers of the three digits for every n. We can do a similar
construction of k is the largest of the three digits. So L is pumpable.

We will use Ogden's Lemma to show L is not context-free. Suppose it
is context free; let p be its pumping constant. Consider z = 0p1p+p!2p+2p!

We will mark the p 0s. Now consider any decomposition z=uvwxy that
satisfies Ogden's Lemma. It is obvious that v and x each contain only 1
digit. One of them contains 0s. The other contains at most 1 of the
digits {1,2}. So let d be the number of 0s in vx. For any n uvnwxny has
p+(n-1)d 0s. If vx contains no 1s then when n=1+(p!)/d uvnwxny has
the same number of 0s and 1s and so is not on L. If vx contains no 2s
then when n=1+(2p!)/d uvnwxny has the same number of 0s and 2s
and so is not in L. Either way, this string z is not pumpable, so L is not
context free.

